负载FeOOH 的Ni-Bi纳米阵列的制备及其析氧性能研究

郝 璐,钟达忠,郝根彦,李晋平,赵 强

(太原理工大学 化学工程与技术学院,气体能源高效清洁利用山西省重点实验室,太原 030024)

摘 要:【目的】开发在近中性条件下高效的非贵金属基析氧反应催化剂用于电解水对于储存、利用太阳能具有重要意义。【方法】将水热法得到的Ni(OH)2/NF 经过电氧化和电沉积两步处理,成功构建了Fe OO H@Ni-Bi/NF电催化剂。【结果】泡沫镍(NF)基底和催化剂的三维纳米片阵列结构提供的大量活性位点,促进了析氧反应的传质过程。此外,通过调控Ni-Bi的电氧化程度和Fe OO H 的沉积量,催化剂的电化学活性得到了极大的提高。在近中性介质(0.1 mmol/L K2B4O7)中测试催化性能,经过优化的FeOOH@Ni-Bi/NF 在电流密度为20 m A/cm2时,过电位为394 m V,Tafel斜率为54.2 m V/dec,表现出优异的析氧反应催化活性且具有长期的稳定性。

关键词:析氧反应;镍铁基;纳米阵列;相互作用

随着能源枯竭和环境恶化问题的日益加剧,开发清洁、可再生的新能源代替传统的化石燃料能够有效解决问题[1-2]。氢能由于来源广泛、能量密度高和零含碳量等优势被认为是一种理想的清洁能源载体[3-5]。电解水制氢对于利用和储存风能、太阳能等可再生能源是一种有前景的策略[3,5-6],由析氢反应(HER)和析氧反应(OER)组成,其中OER 涉及复杂的四电子转移过程,因此与HER 相比,OER 的反应动力学更加缓慢[5,7]。Ir O2和Ru O2是目前已知的最高效的OER 催化剂,但由于成本高昂和稳定性差,不适合长时间、大规模的商业应用[5,8-9]。因此开发高效且廉价的非贵金属基OER 催化剂很有必要[7]。电解水在强碱性或酸性条件下的腐蚀性极高,对设备和生产人员都存在较大的安全隐患,同时还有环境污染问题,而近中性介质中可以很大程度避免上述问题。此外自然界中存在的海水等物质可以直接用于近中性的电解水制氢,与碱性电解液相比,制氢的成本可以大幅降低[8,10-11]

过渡金属由于原料丰富、活性优异且稳定性良好,受到人们的广泛关注,其中镍铁基催化剂被认为是最佳的非贵金属OER 催化剂[8,12]。研究表明,铁位点是镍铁羟基氧化物中催化OER 的主要活性位点[13]。此外,适量铁的掺入能够改变催化剂的电子状态,降低OER过电位,从而提高活性[14]。NiOOH是良好的导电骨架,而FeOOH 是一种电绝缘体,进一步研究发现,FeOOH 比NiOOH 具有更好的本征活性,但FeOOH 单独存在时不稳定,可以与NiOOH结合提高其稳定性[15]。PETER et al[16-17]发现在镍铁羟基氧化物中,Fe存在会改变Ni—O 键的局部状态从而使Ni保持在较低氧化态。因此本文采取先通过电氧化处理得到高价镍,再沉积FeOOH 的方式防止Fe存在对Ni2+氧化的抑制作用。目前,已有大量关于镍铁基催化剂在碱性介质中具有优异OER催化活性的报道[18-19],但在近中性条件下的催化性能仍有待提高,这极大地限制了近中性条件下电解水的发展[1,10]

为提高镍铁基催化剂在近中性条件下的OER催化性能,本文通过引入硼酸根(Bi)充当有效的质子受体(碱性介质中为OH-),确保OER 中的质子耦合电子转移(PCET)过程顺利发生,同时可以保持高催化活性所需的稳定的局部p H 环境,这都有利于OER 发生[20-21]。三维纳米片阵列催化剂通过水热法原位生长在多孔的导电基底NF 上,不仅具有高机械稳定性,而且多孔结构还有利于离子传输和气泡扩散。本文采用电氧化处理和电沉积得到了一种高效的OER 催化剂FeOOH@Ni-Bi/NF.通过探究电氧化程度和铁沉积量对材料OER 活性的影响,得到了具有最佳催化活性的材料。这项工作为开发金属硼酸盐催化剂在近中性条件中的应用提供了新的可能性。

1 实验

1.1 试剂

七水合硫酸亚铁、六水合硝酸镍、氟化铵、无水乙醇和浓盐酸(HCl,质量分数37%)均购自国药集团化学试剂有限公司,尿素、四硼酸钾、无水醋酸钠均购自上海阿拉丁试剂有限公司,以上试剂均为分析纯,且无需进一步提纯可直接使用。实验所用超纯水是Milli-Q超纯水机制备。0.1 mmol/L K2B4O7(KBi)溶液的纯化是参照文献[22]报道的方法进行。

1.2 泡沫镍预处理

NF作为基底,裁剪成所需的大小。使用之前在2 mmol/L HCl溶液、超纯水和无水乙醇中各超声处理10 min,目的是除去NF表面氧化物和其他杂质,之后干燥备用。

1.3 Ni(OH)2/NF的制备

将1.44 mmol 硝酸镍、10 mmol 尿素和4 mmol氟化铵溶于36 m L 超纯水,搅拌至澄清转移到50 m L的内衬中,NF垂直放置,随后将反应釜于120℃下反应6 h.取出样品用水冲洗干净得到Ni(OH)2/NF.

1.4 Ni-Bi/NF的制备

Ni(OH)2/NF 作为工作电极,Pt电极和Ag/AgCl电极分别为对电极和参比电极,25℃下以及-0.4 V~0.6 V 的电压范围内进行100圈的CV电氧化,扫速为50 m V/s.电解液为除Fe 的0.1 mmol/L KBi溶液,取出材料冲洗干净即得到Ni-Bi/NF.

1.5 FeOOH@Ni-Bi/NF的制备

Ni-Bi/NF作为工作电极,Pt电极为对电极,饱和甘汞电极(SCE)为参比电极,1 mmol/L FeSO4和0.1 mmol/L CH3COONa的混合溶液作为电解液,在25℃下和0.5 V~1.2 V 的电压范围内进行1圈CV 电沉积,扫速为50 m V/s,电极用水冲洗干净、晾干得到FeOOH@Ni-Bi/NF.催化剂在NF 上的负载量为2.8 mg/cm2.

1.6 FeOOH@Ni(OH)2/NF的制备

制备过程与FeOOH@Ni-Bi/NF 相似,以Ni(OH)2为工作电极,经过50圈CV 电沉积得到。

1.7 Ru O2/NF的制备

商业Ru O2通常被认为是最佳的OER 催化材料。将10 mg Ru O2溶解在1 m L的乙醇溶液中(含50μL Nafion和950μL乙醇)并超声处理20 min.将350μL混合溶液滴涂在NF(1 cm×1 cm)上,得到负载量为2.8 mg/cm2的Ru O2/NF.

1.8 结构表征

材料物相是通过Bruker D8 的X 射线衍射仪(X-ray diffraction,XRD)表征的。仪器的条件为:Cu-Kα射线(波长为0.154 187 4 nm)、施加电压30 k V、电流为15 m A.测试步长为0.02°,扫描速度为7°/min.

1) 通过Hitachi SU8010 扫描电子显微镜(scanning electron microscopy,SEM)从微观角度表征材料的形貌和尺寸,加速电压为3 k V.

2)FEI Tecnai G2 F20型号的透射电子显微镜(transmission electron microscopy,TEM)表征了催化剂的TEM 图和高分辨率(high-resolution)的HRTEM 图像。

3)Thermo Scientific K-Alpha型号的X 射线光电子能谱(X-ray photoelectron spectroscopy,XPS)表征催化剂表面的元素状态,测试条件为Al-Kα射线,工作电压是12.5 k V,且以C 1s=284.8 eV 结合能为标准进行荷电校正。

4) 样品的拉曼光谱是在Renishaw 型号的反射拉曼光谱仪上表征得到,可以进一步分析催化剂的组成信息。

1.9 电化学活性测试

电化学数据均使用普林斯顿电化学工作站(PARSTAT MC)在三电极体系中测试,催化剂为工作电极,Pt柱和Ag/AgCl电极分别为对电极和参比电极,电解液为0.1 mmol/L KBi溶液。线性扫描伏安曲线(LSV)是在0.4~1.4 V(vs.Ag/AgCl)条件下测得,扫描速率5 m V/s,对应的塔菲尔斜率(Tafel slope)可以通过公式(1)从上述的极化曲线计算得到,其中η表示过电位,b为Tafel斜率,J是电流密度。电化学阻抗谱图(EIS)测试电压为0.85 V(vs.Ag/AgCl),范围为100 k Hz~0.05 Hz.根据公式(2)可将测得的结果转换为可逆氢电极的电压进行比较,同时通过公式(3)对结果进行iR补偿。

2 结果与讨论

2.1 催化剂制备及表征

通过SEM 图像表征样品的微观形貌如图1所示。图1(a)和(b)表明Ni(OH)2是垂直生长在NF上的超薄纳米片阵列,而Ni-Bi/NF 仍然保持初始的三维纳米片结构,但纳米片的边缘变得略微粗糙(图1(c)和(d));FeOOH 沉积后,Ni-Bi的表面覆盖了一层针状物质(图1(e)和(f)).通过TEM 对材料的单个纳米片进行表征并结合SEM 图像,从图1(g)中可以看到在电氧化处理后的纳米片上沉积了FeOOH,进一步发现FeOOH@Ni-Bi/NF 的HRTEM 图像中(图1(h)和(i))并未显示出明显的晶格条纹,表明FeOOH 是以非晶态存在的。图1(j)中Ni(OH)2/NF 的XRD 图中小特征峰分别对应Ni(OH)2的(001)和(101)晶面(JCPDS 14-0117),表明Ni(OH)2的低结晶度;而Ni-Bi/NF 和FeOOH@Ni-Bi/NF的XRD 中Ni(OH)2的特征峰消失,只显示NF的特征峰,说明电氧化处理使催化剂接近于非晶态。随后表征了Ni(OH)2/NF、Ni-Bi/NF 和FeOOH@Ni-Bi/NF 的拉曼光谱(图1(k)).Ni(OH)2/NF 在463 cm-1处的特征峰是Ni(OH)2振动引起的。Ni-Bi/NF 中473 和545 cm-1处的特征峰对应于Eg(δ(Ni—O))和A1g(ν(Ni—O))的振动,证实了 NiOOH 的存在。FeOOH@Ni-Bi/NF 的光谱显示,在476 cm-1和550 cm-1处的振动峰是由NiFe间的相互作用导致NiOOH 的振动峰发生部分偏移[23-24]

图1 Ni(OH)2/NF,Ni-Bi/NF和FeOOH@Ni-Bi/NF的SEM、TEM、HRTEM、XRD、Raman表征结果
Fig.1 SEM,TEM,HRTEM,XRD,Raman characterization results of Ni(OH)2/NF,Ni-Bi/NF and FeOOH@Ni-Bi/NF

通过XPS光谱研究FeOOH@Ni-Bi/NF 表面的元素组成和化合价态,结果如图2所示。在Ni 2p区域,873.5 eV 的Ni 2p1/2峰和855.8 eV 的Ni 2p3/2峰表明Ni2+的存在;875.9 e V 的Ni 2p1/2峰和858 e V 的Ni 2p3/2峰与Ni3+对应[9,25-26](图2(a)).在图2(b)中,催化剂在724.4 eV 和711.5 e V 的结合能是由于FeOOH 中Fe3+的存在[26-27]。在O 1s区域,530.9 eV 和530.0 eV 的特征峰分别与O—H和M—O 的振动有关,532.2 e V 的峰是吸附的水或O2造成的[28](图2(c)).在B 1s区域中191.7 eV的特征峰是由硼酸盐或硼氧化物中的B—O 键引起的,表明存在镍的硼酸盐[29-30](图2(d)).结合上述分析可知催化剂是含二价镍和三价镍的硼酸盐物质,无定形的FeOOH 紧密结合在硼酸镍纳米阵列的表面。为了研究Bi的作用,对比了FeOOH@Ni-Bi/NF和FeOOH@Ni(OH)2/NF 的Ni和Fe的XPS光谱,结果显示,Bi的存在使Ni、Fe的结合能分别负移0.5 eV,有效优化了催化剂的电子结构,使其表现出最佳OER活性[9](如图2(a)和(b)所示)。

图2 FeOOH@Ni-Bi/NF和FeOOH@Ni(OH)2/NF在Ni 2p和Fe 2p区域的XPS谱图对比及FeOOH@Ni-Bi/NF在O 1s和B 1s区域的XPS光谱
Fig.2 XPS spectra of FeOOH@Ni-Bi/NF and FeOOH@Ni(OH)2/NF in Ni 2p and Fe 2p regions;XPS spectra of O 1s and B 1s regions of FeOOH@Ni-Bi/NF

2.2 催化剂电化学活性

所有材料的OER催化活性均在含0.1 mmol/L KBi的三电极体系中测试。优化条件发现,经过100圈CV 电氧化处理、铁溶液浓度为0.1 mmol/L且电沉积1 CV 制得的催化剂具有最佳的OER 活性见图3(a)-(c),说明适量Fe沉积能够调控催化剂表现出最佳性能。为了揭示Bi存在的作用,通过在Ni(OH)2/NF 上直接沉积铁得到FeOOH@Ni(OH)2/NF.材料的极化曲线如图4(a)所示,其中FeOOH@Ni-Bi/NF显示出最好的活性,当电流密度为20 m A/cm2时,过电位为394 m V,远低于Ni-Bi/NF(η20=530 m V)、Ni(OH)2/NF(η20=550 m V)和FeOOH@Ni(OH)2/NF(η20=504 m V).样品的Tafel斜率从图4(b)可知,与Ni-Bi/NF(206.4 m V/dec)、Ni(OH)2/NF(149.5 m V/dec)和FeOOH@Ni(OH)2/NF(164.8 m V/dec)相比,FeOOH@Ni-Bi/NF 的Tafel斜率最低,为54.2 m V/dec,说明催化剂在近中性条件下的活性得到显著提高。此外,商用Ru O2的电化学性能(η20=680 m V)远低于FeOOH@Ni-Bi/NF,进一步表明其具有优异的催化活性(见图4(d)-(f)).

图3 不同制备条件下FeOOH@Ni-Bi/NF的OER 极化曲线(iR补偿)
Fig.3 Polarization curves withiR-compensation of FeOOH@Ni-Bi/NF prepared with different conditions

图4 Ni(OH)2/NF、Ni-Bi/NF、FeOOH@Ni-Bi/NF、FeOOH@Ni(OH)2/NF以及RuO2/NF的OER 极化曲线,塔菲尔斜率和EIS谱图
Fig.4 OER polarization curves,Tafel plots,and EISspectra for Ni(OH)2/NF,Ni-Bi/NF,FeOOH@Ni-Bi/NF,FeOOH@Ni(OH)2/NF,and RuO2/NF

对比发现FeOOH@Ni(OH)2/NF的性能略高于Ni(OH)2/NF,但FeOOH@Ni-Bi/NF仍表现出远优于FeOOH@Ni(OH)2/NF 的活性。FeOOH@Ni(OH)2/NF的SEM 见图5,显示出FeOOH 纳米片堆积在Ni(OH)2上,分布不均匀,表明Bi的存在可使FeOOH 短时间内均匀沉积在Ni-Bi表面。通过图4(c)的EIS 结果可知FeOOH@Ni-Bi/NF也表现出最小的半圆弧,与LSV 曲线一致,说明Bi以及活性位点Fe的存在不仅可以有效降低过电位,还可以调节电子结构,提高电荷转移速率,促进OER 过程的反应动力学。表1列举了所制备催化剂与其他类似材料的OER 催化性能,对比发现催化剂在近中性和碱性介质中都具有较低的过电位和塔菲尔斜率,因此表现出优异的OER 催化活性。

表1 催化剂与已报道材料的性能对比
Table 1 Performance comparison of FeOH@Ni-Bi/NF catalyst with reported materials

?

图5 FeOOH@Ni(OH)2/NF的SEM 图
Fig.5 SEM images of FeOOH@Ni(OH)2/NF

稳定性也是催化剂性能的关键指标之一。计时电位测试结果表明催化剂能在20 m A/cm2的电流密度下保持50 h的恒定电压(如图6(b)所示)。此外,对稳定性测试后的FeOOH@Ni-Bi/NF进行SEM 和XPS表征。从图6(a)SEM 中可知,催化剂表面变得略微粗糙,但仍然保持三维纳米片阵列结构,进一步证明了FeOOH@Ni-Bi/NF 的良好稳定性。通过XPS表征研究了稳定性测试前后元素电子结构的变化,发现Ni 2p、Fe 2p和B 1s区域的结合能没有明显偏移,而O 1s略有偏移,可能有少许镍铁羟基氧化物生成[39](如图6(c)-(f)所示)。

图6 FeOOH@Ni-Bi/NF在50 h稳定性测试后的SEM 图和对应的计时电位曲线,及其在50 h稳定性测试前后不同区域的XPS谱图
Fig.6 SEM image and corresponding chronopotentiometry of FeOOH@Ni-Bi/NF after 50 h stability test,and their XPS spectra of different regions before and after 50 h stability test

3 结论

本文构建了一种具有三维纳米片阵列结构的FeOOH@Ni-Bi/NF催化剂。通过优化电氧化程度和铁的沉积量,催化剂在近中性介质中表现出优异的OER 催化活性,当电流密度为20 m A/cm2时过电位为394 m V.SEM、XPS等表征结果分析可知,Bi的引入促进了FeOOH 的快速均匀沉积,同时与NiFe羟基氧化物之间的相互作用共同优化了催化剂的电子状态,加速了电荷转移速率,改善了OER的反应动力学,从而显著提高了催化剂在近中性条件下的OER 催化活性。

参考文献:

[1] DONG Y,OLOMAN C W,GYENGE E L,et al.Transition metal based heterogeneous electrocatalysts for the oxygen evolution reaction at near-neutral p H[J].Nanoscale,2020,12(18):9924-9934.

[2] DINCER I,ACAR C.A review on clean energy solutions for better sustainability[J].International Journal of Energy Research,2015,39(5):585-606.

[3] XU Y,WANG C,HUANG Y,et al.Recent advances in electrocatalysts for neutral and large-current-density water electrolysis[J].Nano Energy,2021,80:105545.

[4] CHEN J,ZHENG F,ZHANG S-J,et al.Interfacial interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis[J].ACS Catalysis,2018,8(12):11342-11351.

[5] ZHANG K,ZOU R.Advanced transition metal-based OER electrocatalysts:current status,opportunities,and challenges[J].Small,2021,17(37):e2100129.

[6] YAN D,LI Y,HUO J,et al.Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions[J].Adv Mater,2017,29(48):1606459.

[7] WU Z P,LU X F,ZANG S Q,et al.Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction[J].Advanced Functional Materials,2020,30(15):1910274.

[8] ZHAO J,ZHANG J J,LI Z Y,et al.Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction[J].Small,2020,16(51):e2003916.

[9] DONG Y,KOMARNENI S,WANG N,et al.An in situ anion exchange induced high-performance oxygen evolution reaction catalyst for the p H-near-neutral potassium borate electrolyte[J].Journal of Materials Chemistry A,2019,7(12):6995-7005.

[10] ZHU G,GE R,QU F,et al.In situ surface derivation of an Fe-Co-Bi layer on an Fe-doped Co3O4nanoarray for efficient water oxidation electrocatalysis under near-neutral conditions[J].Journal of Materials Chemistry A,2017,5(14):6388-6392.

[11] CUI X,REN P,MA C,et al.Robust interface Ru centers for high-performance acidic oxygen evolution[J].Adv Mater,2020,32(25):e1908126.

[12] GONG M,DAI H.A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts[J].Nano Research,2014,8(1):23-39.

[13] STEVENS M B,TRANG C D M,ENMAN L J,et al.Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity[J].J Am Chem Soc,2017,139(33):11361-11364.

[14] FRIEBEL D,LOUIE M W,BAJDICH M,et al.Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting[J].J Am Chem Soc,2015,137(3):1305-1313.

[15] BURKE M S,KAST M G,TROTOCHAUD L,et al.Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts:the role of structure and composition on activity,stability,and mechanism[J].J Am Chem Soc,2015,137(10):3638-3648.

[16] GORLIN M,CHERNEV P,FERREIRA D A J,et al.Oxygen evolution reaction dynamics,faradaic charge efficiency,and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts[J].J Am Chem Soc,2016,138(17):5603-5614.

[17] BATES M K,JIA Q,DOAN H,et al.Charge-transfer effects in Ni-Fe and Ni-Fe-Co mixed-metal oxides for the alkaline oxygen evolution reaction[J].ACS Catalysis,2015,6(1):155-161.

[18] WANG N,CAO Z,KONG X,et al.Activity enhancement via borate incorporation into a NiFe (oxy)hydroxide catalyst for electrocatalytic oxygen evolution[J].Journal of Materials Chemistry A,2018,6(35):16959-16964.

[19] GONG L Q,YANG H,DOUKA A I,et al.Recent progress on NiFe-based electrocatalysts for alkaline oxygen evolution[J].Advanced Sustainable Systems,2021,5(1):2000136.

[20] BEDIAKO D K,SURENDRANATH Y,NOCERA D G.Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst[J].J Am Chem Soc,2013,135(9):3662-3674.

[21] SURENDRANATH Y,NOCERA D G.Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation[J].J Am Chem Soc,2009,131(7):2615-2620.

[22] TROTOCHAUD L,YOUNG S L,RANNEY J K,et al.Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts:the role of intentional and incidental iron incorporation[J].J Am Chem Soc,2014,136(18):6744-6753.

[23] YAN P,LIU Q,ZHANG H,et al.Deeply reconstructed hierarchical and defective N iOOH/FeOOH nanoboxes with accelerated kinetics for the oxygen evolution reaction[J].Journal of Materials Chemistry A,2021,9(28):15586-15594.

[24] BEDIAKO D K,LASSALLE-KAISER B,SURENDRANATH Y,et al.Structure-activity correlations in a nickel-borate oxygen evolution catalyst[J].J Am Chem Soc,2012,134(15):6801-6809.

[25] DONG Y,KOMARNENI S,ZHANG F,et al.“Structural instability”induced high-performance NiFe layered double hydroxides as oxygen evolution reaction catalysts for p H-near-neutral borate electrolyte:the role of intercalates[J].Applied Catalysis B:Environmental,2020,263:118343.

[26] GUO W,LI D,ZHONG D,et al.Loading FeOOH on Ni(OH)2hollow nanorods to obtain a three-dimensional sandwich catalyst with strong electron interactions for an efficient oxygen evolution reaction[J].Nanoscale,2020,12(2):983-990.

[27] WANG A L,DONG Y T,LI M,et al.In situ derived NixFe1-xOOH/NiFe/NixFe1-xOOH nanotube arrays from NiFe alloys as efficient electrocatalysts for oxygen evolution[J].ACS Appl Mater Interfaces,2017,9(40):34954-34960.

[28] ZHU W,ZHANG T,ZHANG Y,et al.A practical-oriented NiFe-based water-oxidation catalyst enabled by ambient redox and hydrolysis co-precipitation strategy[J].Applied Catalysis B:Environmental,2019,244:844-852.

[29] SU L,DU H,TANG C,et al.Borateion intercalated NiFe layered double hydroxide to simultaneously boost mass transport and charge transfer for catalysis of water oxidation[J].J Colloid Interface Sci,2018,528:36-44.

[30] HAN P,TAN T,WU F,et al.Nickel-iron borate coated nickel-iron boride hybrid for highly stable and active oxygen evolution electrocatalysis[J].Chinese Chemical Letters,2020,31(9):2469-2472.

[31] REN X,GE R,ZHANG Y,et al.Cobalt-borate nanowire array as a high-performance catalyst for oxygen evolution reaction in near-neutral media[J].Journal of Materials Chemistry A,2017,5(16):7291-7294.

[32] MA M,QU F,JI X,et al.Bimetallic nickel-substituted cobalt-borate nanowire array:an earth-abundant water oxidation electrocatalyst with superior activity and durability at near neutral p H[J].Small,2017,13(25):1700394.

[33] DONG Y,KOMARNENI S,ZHANG F,et al.“Structural instability”induced high-performance NiFe layered double hydroxides as oxygen evolution reaction catalysts for p H-near-neutral borate electrolyte:the role of intercalates[J].Applied Catalysis B:Environmental,2020,263:118343.

[34] SILVA M M,RAIMUNDO R A,SILVA T R,et al.Morphology-controlled NiFe2O4nanostructures:influence of calcination temperature on structural,magnetic and catalytic properties towards OER[J].Journal of Electroanalytical Chemistry,2023,933:117277.

[35] ZHANG S,CEN M,WANG Q,et al.Complete reconstruction of Ni MoO4/NiFe LDH for enhanced oxygen evolution reaction[J].Chemical Communications,2023,59(23):3427-3430.

[36] ZHAI Y,REN X,SUN Y,et al.Synergistic effect of multiple vacancies to induce lattice oxygen redox in NiFe-layered double hydroxide OER catalysts[J].Applied Catalysis B:Environmental,2023,323:122091.

[37] LIU W,WANG X,WANG F,et al.Electrochemical hydroxidation of sulfide for preparing sulfur-doped NiFe(oxy)hydroxide towards efficient oxygen evolution reaction[J].Chemical Engineering Journal,2023,454:140030.

[38] ZHOU Y,GUO Q,LUO J,et al.The influence of increased content of Ni(III)in NiFe LDH via Zn doping on electrochemical catalytic oxygen evolution reaction[J].International Journal of Hydrogen Energy,2023,48(13):4984-4993.

[39] CHENG C,LI D,ZHAO T,et al.NiFe2O4-Ni3S2nanorod array/Ni foam composite catalyst indirectly controlled by Fe3+immersion for an efficient oxygen evolution reaction[J].International Journal of Hydrogen Energy,2021,46(27):14407-14417.

Ni-Bi Nanosheet Arrays Loaded with FeOOH for Efficient Oxygen Evolution

HAO Lu,ZHONG Dazhong,HAO Genyan,LI Jinping,ZHAO Qiang
(CollegeofChemicalEngineeringandTechnology,ShanxiKeyLaboratoryofGasEnergyEfficient andCleanUtilization,TaiyuanUniversityofTechnology,Taiyuan030024,China)

Abstract:【Purposes】It is of great significance for the storage and utilization of solar energy to develop high-efficiency non-precious metal oxygen evolution reaction(OER)catalysts that can be used in water splitting under near-neutral conditions.【Methods】FeOOH@Ni-Bi/NF electrocatalyst was constructed in two steps by electro-oxidation treatment and electro-deposition of Ni(OH)2/NF that obtained by hydrothermal method.【Findings】The large number of active sites provided by nickel foam(NF)substrate and three-dimensional nanosheet array structure of the catalyst facilitate the mass transfer process of OER.In addition,the electrochemical activity of catalyst is greatly enhanced by modulating the electro-oxidation degree of Ni-Bi and the amount of deposited FeOOH.Catalytic performance of the optimized FeOOH@Ni-Bi/NF is tested in nearneutral medium(0.1 mmol/L K2B4O7)with an overpotential of 394 m V and a Tafel slope of 54.2 m V/dec at 20 m A/cm2,showing excellent catalytic activity and long-term stability for OER.

Keywords:oxygen evolution reaction;NiFe-based;nanosheet array;synergistic effect

中图分类号:TQ116.2

文献标识码:A

DOI:10.16355/j.tyut.1007-9432.20230120

文章编号:1007-9432(2024)03-0437-08

引文格式:郝璐,钟达忠,郝根彦,等.负载FeOOH 的Ni-Bi纳米阵列的制备及其析氧性能研究[J].太原理工大学学报,2024,55(3):437-444.

HAO Lu,ZHONG Dazhong,HAO Genyan,et al.Ni-Bi nanosheet arrays loaded with FeOOH for efficient oxygen evolution[J].Journal of Taiyuan University of Technology,2024,55(3):437-444.

收稿日期:2023-03-02;修回日期:2023-05-09

基金项目:国家自然科学基金资助项目(21878202,21975175)

第一作者:郝璐(1996-),硕士研究生,(E-mail)haolu0623@link.tyut.edu.cn

通信作者:赵强(1978-),博士,教授,博士生导师,主要从事电解水制氢方面的研究,(E-mail)zhaoqiang@tyut.edu.cn

(编辑:朱 倩)

Baidu
map