随着世界人口、经济、工业的快速发展,用有限的化石燃料来满足日益增长的能源需求正变得越来越困难。同时,化石燃料燃烧对全球环境的影响也日益严重。因此,寻求可替代的清洁能源和构建可持续发展社会,成为21世纪世界各国共同关注的重要议题之一。在此背景下,新型热电技术能够实现热能与电能的直接转化,在全球可持续能源领域中发挥着重要作用。
经过几十年全球热电学者的共同努力,目前,已有很多材料体系的无量纲热电优值(dimensionless figure of merit,ZT)被提高到1以上,有些甚至高于2,例如:V2VI3化合物[1-3]、IV-VI化合物[4-6]、过渡金属硫族化合物[7-8]、半赫斯勒化合物[9-11]、方钴矿[12-14]、Zintl化合物[15]、笼状物[16]、金属硅化物[17-20]和硅锗合金[21]。其中,由于Mg元素储量丰富(地壳元素丰度排名第8)、无毒无污染和成本低,因而含Mg热电材料表现出更好的应用前景。在20世纪30年代,ZINTL et al[22]首次报道了Mg3X2(X=Sb,Bi)金属间化合物,之后将其归为Zintl相化合物。在50年代,PINCHERLE et al[23]首次研究了Mg3X2的电输运行为。在2000年以后,Mg3X2(X=Sb,Bi)热电性能的研究才真正开始[24-30]。本文以Mg3Sb2基材料为对象,简要介绍了其晶体结构、电子结构及n/p型热电性能优化方面的研究进展,以使该材料体系在热电领域得到更好的认识和重视。
热电转化技术能够利用材料的Seebeck效应和Peltier效应,完成热能与电能之间的相互转化。该技术以热电材料为载体,以电子/空穴作为工作介质,可以在全固态的条件下,无噪音地直接完成转化过程。
Seebeck效应是存在于一些半导体或半金属材料中的性质。以条状p型(n型)热电材料为例,当其两端存在温差时,高温端空穴(电子)就会具有更大的动能,趋于向冷端扩散并在冷端积累。这时产生的空穴(电子)浓度差会在材料内部建立电场,空穴(电子)在该自建电场中的漂移运动与扩散运动达到动态平衡时,材料两端就会产生电势差V,以Seebeck系数α=dV/dT表示。此现象可用气体分子运动理论知识来做类比。假设含有载流子的热电材料为充有气体的容器,加热该容器的一端,热端气体分子将会吸热从而获得更大动能,气体分子无规则运动宏观表现为气体压力,则热端气体压力大于冷端的气体压力,导致气体分子从热端扩散到冷端,直到两端气体压力相同为止。此时,由理想气体状态方程可知,热端的气体分子数会少于冷端的气体分子数,形成气体分子浓度梯度。若气体分子是载流子,那么会产生相应的电势差。Seebeck效应主要用于温差发电,图1(a)为其应用示意图[31]。
图1 热电转化示意图
Fig.1 Application of thermoelectric conversion
与Seebeck效应相反,Peltier效应是以电流激励而导致的热转移。当连接材料A和B并通以电流时,A、B两接头处分别会出现吸热和放热的现象,且吸放热会随电流方向的改变而改变。在时间dt内所转移的热量dQ与通过的电流I成正比可表示为:dQ/dt∝πI,其中π为peltier系数。Peltier效应主要应用于热电制冷,图1(b)为其应用示意图。
材料的热电性能,可以通过无量纲热电优值ZT来表征[32],定义为ZT=σα2T/(κc+κL),式中:σ、α、T、κc和κL分别为电导率、Seebeck系数、绝对温度、载流子热导率和晶格热导率。可以看出,高的热电优值需要有大的电导率、Seebeck系数和低的热导率。通过求解玻尔兹曼方程,BEER et al[33]得出材料电热输运性能的3个参数,表示如下。
电导率:
σ=neμ.
(1)
(2)
Seebeck系数:
(3)
(4)
载流子热导率:
κc=LTσ.
(5)
(6)
(7)
式中:n、e、μ、m*、h、ηF、r、L、L′和kB分别为载流子浓度、元电荷、载流子迁移率、载流子态密度有效质量、简约普朗克常数、简约费米能级、载流子散射因子、Lorenz数、Lorenz因子和Boltzmann常数。无量纲热电优值可以表示为:
(8)
β∝μ(m*)3/2/κL.
(9)
研究表明,材料的热电性能在很大程度上取决于由掺杂浓度(载流子浓度)所决定的费米能级EF.因此,无量纲热电优值ZT与载流子浓度n有很大关系,通过掺杂使载流子浓度达到最佳值,便可得到最优热电优值。
在温度低于1 203 K和976 K时,Mg3Sb2和Mg3Bi2晶体呈反La2O3的菱方结构(空间群:P-3 ml),其由相互穿插的[Mg2(Sb/Bi)2]2-层和Mg2+层构成,晶体结构如图2所示[34],图中标出了对应的化学键长。Mg原子在晶格中占据两个不同的位置,分别为:(a) 由6个Sb/Bi组成的八面体中心(Mg1),(b) 由4个Sb/Bi组成的四面体中心(Mg2).Mg1原子表现出低的电负性,趋于向共价键结合的Mg2(Sb/Bi)2层提供2个电子。明晰这种结构之后,能够对掺杂元素在Mg3X2(X=Sb和Bi)晶格中的选择性占位进行简单的预测[35]。例如,电负性较低的碱土金属(Ca,Sr,Ba)和镧系元素(La和Yb)优先取代Mg1原子[36-38];电负性稍大的Zn,Mn和Cd会优先取代Mg2原子[39]。
ZHANG et al[40]发现Mg1和Mg2原子与Sb原子结合时,分别带有+1.51和+1.47的电荷,表现出Mg1/Mg2与Sb原子之间相近的键合特征。Mg3Sb2晶体层间由离子结合为主,共价结合为辅,与层间结合强度相当。不同于其他CaAl2Si2型Zintl化合物,这种结合方式刚好能够合理地解释Mg3X2(X=Sb和Bi)热传输性能的各向同性现象。SUN et al[41]指出,除了Mg-Sb之间的相互作用之外,在导带极小值(conduction band minimum,CBM)处,Mg1和Mg2原子之间也存在键合作用。由于Mg1和Mg2原子之间距离相对较大(图2),而且它们的原子电荷也很相近,所以Mg1和Mg2的3s能级之间的相互作用要比Mg-Sb键弱很多。总之,Mg3X2在层间和层内的Mg-Sb键上表现出几乎各向同性的化学键合特征,并在CBM上出现Mg1-Mg2弱相互作用。Mg3X2晶体这种独特的键合特征(部分源于Mg1和Mg2双Mg原子环境),对其电子、声子传输至关重要。
右上图是[001]方向视图;di(i=1-4)表示邻近原子间键长
图2 Mg3Sb/Bi2晶体结构图
Fig.2 Crystal structure of Mg3Sb/Bi2
LI et al[42]基于密度泛函理论的第一性原理计算,得到了几何优化后的Mg3Sb2晶体结构,如图3(a)所示,其晶格参数:a=4.492 nm;c=7.097 nm.同时,采用局域密度近似(LDA)得到的带隙值为0.051 eV(图3(c)所示),与其他方法(HSE06和TB-mBJ)所得带隙值(~0.60 eV)[43-44]相比较低。虽然后者所得的带隙值更接近于实测值,但是二者的能带构型是相似的。结合图3(b)-(d)可以看出,导带有多能谷特征。导带最小值(CBM1)位于第一布里渊区(0.0,0.417,0.333)处。另外两个导带能谷最小值:CBM2位于能量比CBM1高0.067 eV的K点;CBM3位于能量比CBM2高0.039 eV的M-L方向上。这些能谷所在位置与能量差异均与其他研究报道的能带结构一致。同时,由图3(c)和(e)可以看出,价带最大值(VBM)仅出现在第一布里渊区的Γ点。
从图3(d)和(e)可以看出,第一布里渊区等能面并非球形等能面,由此可能会造成电传输的各向异性。电导率的各向异性起源于不同方向上载流子传输速度,而载流子传输速度反相关于其有效质量。可见,沿不同晶轴的有效质量差异能够反映出电导率及载流子热导率的差异。很多相关计算均得到了相近的载流子有效质量[44-45],这里选取CBM1处有效质量分别为由于对称性,(a)-(b)面上的物理性能应是各向同性的,但是
与
相差较大。通过观察能量比CBM1高0.05 eV的等能面,发现有6个等价的电子能谷。因此,(a)-(b)面上有效质量应该是6个等能面的平均值,获得的平均值刚好在倒空间主轴方向上是相等的,如图3(f)所示,即沿kx和ky方向上的平均有效质量相等且为0.22m0.(a)-(b)面内方向有效质量与c轴方向有效质量有较小差别,所以n型Mg3Sb2材料可能表现出较小或可忽略的各向异性。同时,在载流子浓度一定的条件下,高的Seebeck系数取决于高的总态密度有效质量
是参与载流子传输的能谷数)。在VBM的Γ点处,有效质量分别为
在p型Mg3Sb2材料中,沿c轴方向小的有效质量是由距离较小的层间较强的作用力导致的,这与Bi2Te3材料中由范德华力主导的弱层间作用力不同。很明显,空穴在Mg3Sb2材料中的传导将出现强的各向异性。同时,对于层状结构,沿面内方向的电导率一般都优于沿垂直面方向的电导率,例如:n型Bi2Te3,其面内电导率是面外方向的三倍[46]。考虑到VBM沿kz方向(对应于晶体学c轴)的有效质量比(a)-(b)面方向几乎小一个数量级,因此p型Mg3Sb2材料中优良的电导率应该出现在(a)-(b)面外方向上。
图3 (a)Mg3Sb2晶体几何优化结构;(b)第一布里渊区和高对称点;(c)电子能带结构;(d)能量比CBM1高0.05 eV的等能面;
(e)能量比VBM低0.1 eV的等能面;(f)a-b面不同方向上的有效质量(0°和60°对应于倒空间的kx和ky轴)[42-43]
Fig.3 (a) Geometric structure of Mg3Sb2; (b)First Brillouin zone and high symmetry points; (c) Electronic band structure;
(d) Isoenergy surface of Mg3Sb2with energy 0.05 eV above CBM1; (e) Isoenergy surface of Mg3Sb2with energy
0.1 eV below VBM; (f) Electron effective mass in the ab-plane according to spatial directions, where 0°
and 60°correspond to thekx- andky-axis in the reciprocal space, respectively
在本征条件下,Mg3Sb2化合物常表现为p型传导,这是由Mg空位较低的形成能导致的[30]。在p型Mg3Sb2化合物研究方面,主要利用Zn[47-48]、Na[29]、Ag[49-50]、Li[51]和Mn[52]等掺杂元素对Mg位进行取代和利用Pb、Bi等元素替换Sb位[27-28],从而提高基体材料的载流子浓度。需要指明的是,大多数p型Mg3Sb2材料的研究,在性能测试时并未考虑传输方向的问题。LV et al[53]通过固相反应、球磨结合放电等离子体烧结方法制备的p型Mg3Sb2材料,在垂直与平行压力方向上测得的性能并未表现出明显的各向异性。
2.3.1阴离子位取代
BHARDWAJ et al[27]在Mg3Sb2基体中通过Bi元素替换Sb制备了Mg3Sb2-xBix(0≤x≤0.4)样品,载流子浓度显著提高,同时合金化引入的点缺陷散射降低了晶格热导率,在750 K,Mg3Sb1.8Bi0.2样品获得了最高热电优值ZT~0.58.在二元Mg3Sb2化合物中通过Pb取代Sb,在保持高Seebeck系数的同时,能够提高载流子浓度,同时通过电荷补偿导致的弱化离化杂质散射效应优化了载流子迁移率,最终提高了电导率和热电性能[28,54]。
2.3.2阳离子位取代
AHMADPOUR[26]、XIN[47]等通过在Mg3Sb2基体材料中用Zn原子替换Mg原子,提高了室温下ZT值。BHARDWAJ et al[55]通过向Mg3Sb2中掺杂Zn,使Zn替换[Mg2Sb2]2-层中的Mg的位置,发现载流子浓度增加的同时,增强的质量波动散射降低了晶格热导率,使热电性能得到了优化(Mg2.9Zn0.1Sb2样品在773 K时ZT值达到0.37),并通过对Mg3Sb2化合物及其Zn掺杂结构的第一性原理计算解释了其电、热传输性能变化的原因。CHEN et al[51]首先在Mg位掺杂Li提高了载流子浓度,Mg2.975Li0.025Sb2样品的ZT值在773 K时达到0.6;之后又利用Zn和Li双掺降低了晶格热导率,同时得出Zn在Mg位上的等电子取代使其带隙减小,电导率提高,进一步优化了热电性能。
SONG et al[50]首先通过对本征Mg3Sb2化合物的电子结构进行了理论计算,预测在最佳掺杂量的条件下其载流子浓度最高可达4.0×1019cm-3;然后通过在p型Mg3Sb2化合物中掺杂Ag,同时优化了材料的功率因子和热导率,使掺杂样品的ZT值比本征样品提高了2.4倍,最高ZT值达到了0.51.FU et al[56]在Mg位掺杂Ag元素制备了Mg3-xAgxSb2样品,一方面载流子浓度的优化提高了功率因子,另一方面掺杂造成的晶格畸变增强了声子散射,在一定程度上降低了热导率,使ZT值在773 K时达到0.66.SHUAI et al[29]通过在Mg位掺杂Na元素,晶格热导率升高的同时,载流子浓度显著提升,最高可达1.71×1020/cm3,当掺杂量为0.012 5时,最高ZT值在773 K时达到0.6.REN et al[57]在掺杂Na元素的基础上,又在Mg位掺杂了Zn元素,同时提高了载流子浓度和迁移率,使Na、Zn双掺杂样品的功率因子和ZT值均超过了其他的掺杂样品。
图4所示为代表性p型Mg3Sb2基材料功率因子与热电优值ZT随温度的变化关系[57]。可以看出,目前p型Mg3Sb2基材料在500 K处获得最高功率因子PF~9.0 μW·cm-1·K-2,在750 K处获得最大热电优值ZT~0.9.
图4 代表性p型Mg3Sb2基材料(a)功率因子PF
和(b)热电优值ZT随温度的变化关系
Fig.4 Typical p-type Mg3Sb2-based materials: temperature-
dependent (a) power factor PF and (b) figure of merit ZT
长期以来,Mg3Sb2基材料一直被认为是p型半导体,其对应的n型传输未被发现过,所合成的Mg3Sb2基材料总是呈现出p型传输。直到2016年,TAMAKI et al[58]通过添加过量Mg并结合Te掺杂,首次实现了Mg3Sb2基材料的n型传输。此后,n型Mg3Sb2基材料的研究迅速发展,很多研究组都报道了其较高的n型热电优值,在300~500 K温度范围内,n型平均ZT值可达1.1,可与经典的Bi2Te3基材料相媲美[59-62]。
2.4.1Bi固溶
Mg3Sb2(半导体)与Mg3Bi2(半金属)固溶能够有效调控热电性能。二者进行固溶能够减小带隙[63]和载流子有效质量[64]。理论上,随着Bi含量的增加,态密度有效质量m*可以从1.53m0(Mg3Sb2)减小到1.23m0(Mg3SbBi)与0.87m0(Mg3Bi2),这种单能谷态密度有效质量的减小非常有利于迁移率的提高,同时会小幅减小Seebeck系数。实验证实,Bi固溶确实减小了态密度有效质量,同时,Bi固溶引入的点缺陷能够显著降低晶格热导率。因此,Bi固溶量要综合考虑迁移率、Seebeck系数、双极扩散和晶格热导率之间的平衡。
2.4.2化学掺杂
缺陷化学在Zintl热电化合物中得到了广泛的研究,其本征缺陷和掺杂缺陷均对电传输性能有较大的影响[41,65]。在Mg3Sb2基材料中,本征Mg空位具有低的缺陷形成能,带负电的Mg空位趋于将费米能级EF钉轧在价带附近(或推向价带),使得该材料总表现出p型传输。如图5所示,无论Mg过量与否,EF越接近导带,受主Mg空位越易生成[30]。通过加入过量Mg,可以将p型传输逐渐调节成n型。然而,由于本征掺杂极限的存在,电子浓度仅能达到1018cm-3.因此,采用非本征掺杂则成为进一步提高电子浓度的有效方法。
图5 Te掺杂的缺陷形成能
Fig.5 Defect formation energy with Te doping
理论计算和实验表明,关于Sb位掺杂,Te比Se有更小的形成能和更大的掺杂极限,能够更有效地提高载流子浓度[66]。关于Mg位掺杂,La、Y和Sc均有比Te取代Sb位更低的形成能,预测La、Y和Sc取代Mg位后,电子浓度可达~1020cm-3.实验证明,随着以上五种元素掺杂量的增加,电子浓度逐渐增加,最终趋于某一稳定值(掺杂极限)。其中,Te、La、Y和Sc的掺杂能够将电子浓度提升至3×1019~5×1019cm-3[67].
2.4.3载流子散射机制
抑制Mg空位不仅能够调节载流子浓度,还可以调控载流子散射机制,从而提高迁移率和热电优值。此外,MAO et al[68]引入过渡金属(Fe、Co、Hf和Ta)有效调节了室温附近散射机制,使得室温下的迁移率由16 cm2·V-1·s-2提高到81 cm2·V-1·s-2.KUO et al[69]指出Mg3Sb2基材料呈现出特殊的载流子晶界散射机制,这种散射在室温附近更加明显。研究表明,相同组成的大晶粒尺寸样品确实具有更高的迁移率和电导率[70]。例如在室温下,平均晶粒尺寸为7.8 μm的样品电导率为4×104Sm-1,当平均晶粒尺寸减小到1.0 μm,其电导率会下降到1×104Sm-1[71].通过退火和热变形获得的大晶粒尺寸样品确实具有更高的迁移率。KUO et al[72]在Mg3.05Sb1.99Te0.01样品界面进行了缺陷组成的分析,发现晶界处更容易形成电子受主的Mg空位缺陷,从而增强载流子在晶界处的散射。在n型单晶Mg3Sb2基材料中,声学声子散射成为电子散射的主要散射机制,迁移率得到有效提高,同时也进一步说明了对应多晶样品中存在的载流子晶界散射[73]。
图6(a)所示为代表性n型Mg3Sb2基材料室温ZT与最高ZT值。可以看出,在室温附近,n型Mg3Sb2基材料ZT值可达0.8,是一个有潜力的Bi2Te3基热电材料替代物,用来进行固态制冷[34]。
图6 (a)代表性n型Mg3Sb2基材料的室温ZT与最高ZT值;
(b)热端为350 K时,温差(ΔT)与电流的关系
(插图是制冷实验装置实物图)
Fig.6 (a) ZT at RT and ZT peak of typical n-type Mg3Sb2-based
materials; (b) Electrical current dependence of temperature
difference (ΔT) between the hot and cold sides at the hot-
side T of 350 K (the inset shows optical image of the
experimental setup for the TE cooling measurement)
由于n型Mg3Sb2-xBix固溶体具有较优异的热电性能,有些研究组已经在实验室开展了该材料热电发电和制冷方面的应用研究。通常情况下,将富Sb组成(有较大带隙)用于中温区发电,富Bi组成(有较小带隙)用于室温制冷。ZHU et al[74]测试了Mg3.1Co0.1Sb1.5Bi0.49Te0.01材料热电单臂的发电效率,在300~700 K范围内,热电转化效率可达10.6%,表明该材料有较好的中温发电应用潜力。此外,MAO et al[75]报道了由室温ZT~0.7的n型Mg3.2Sb0.5Bi1.498Te0.02材料与p型Bi0.5Sb1.5Te3材料组成的热电单偶的制冷研究,可获得约91 K的温差,对应的热端温度为350 K,这种制冷效果甚至优于商业化Bi2Te3基热电模块。由于Mg的高温挥发性和易氧化性,n型Mg3Sb2基材料在中温发电应用中可能存在热稳定性的问题。变温XRD结果表明[76],块状和粉末状p型Mg2.985Ag0.015Sb2在第一次加热至高于500 K时,就出现了Sb第二相。JORGENSEN et al[77]也发现n型Mg3Sb1.475Bi0.475Te0.05在经受第一次热循环(300~700 K)后,就有11%的Bi第二相析出。这可以从化学键方面解释,因为Mg-Bi键长大于Mg-Sb键长,随着Bi含量的增加,小的Mg1原子容易偏离八面体,从而弱化层间键合,导致材料失稳。研究发现[60],通过采用合适的元素进行掺杂(特指小尺寸Mg原子被大尺寸原子取代),可以有效地改善热稳定性。Mg适当过量也可以提高该材料的热稳定性[76],但过多Mg又可能引起氧化和高的热导率[78]。此外,对于进一步的热电应用研究,还有很多工程方面的挑战需要面对,包括模块设计、电极制备、中间层优化以及保护性涂层等,而理解Mg3Sb2基材料的基本物理化学性质则是解决这些工程问题的关键。
本文介绍了热电材料的两大基本效应(Seebeck效应和Peltier效应)的应用原理,利用这两种热电效应能够完成热能和电能之间的相互转化。Mg3Sb2基材料晶体结构和缺陷形成能的计算表明,Mg空位是极易形成的缺陷,在Mg过量的条件下才能获得n型传输。电子能带结构计算结合实验表明,由于Mg3Sb2基材料导带底存在六重简并的能谷,所以相比p型,其n型热电性能更加优异。n型Mg3Sb2基材料已经表现出取代商业化Bi2Te3基材料的潜力,关于今后热电模块应用而言,材料的大规模制备、热电接头连接(中间层材料和电极材料)、模块设计和封装是目前面临的重要问题。
[1] POUDEL B,HAO Q,YI M,et al.High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J].Science,2008,320:634-638.
[2] ZHU T,HU L,ZHAO X,et al.New insights into intrinsic point defects in V2VI3thermoelectric materials[J].Advanced Science,2016,3(7):1600004.
[3] YU P,YANG Q,WITTING I,et al.Synergistic modulation of mobility and thermal conductivity in (Bi,Sb)2Te3towards high thermoelectric performance[J].Energy & Environmental Science,2019,12(2):624-630.
[4] ZHANG X,BU Z,LIN S,et al.GeTe thermoelectrics[J].Joule,2020,4(5):986-1003.
[5] PEI Y,SHI X,LALONDE A,et al.Convergence of electronic bands for high performance bulk thermoelectrics[J].Nature,2011,473(7345):66-69.
[6] ZHAO L D,LO S H,ZHANG Y,et al.Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J].Nature,2014,508(7496):373-377.
[7] LIU H,SHI X,XU F,et al.Copper ion liquid-like thermoelectrics[J].Nature materials,2012,11(5):422-425.
[8] GE Z H,LIU X,FENG D,et al.High-performance thermoelectricity in nanostructured earth-abundant copper sulfides bulk materials[J].Advanced Energy Materials,2016:1600607.
[9] FU C,BAI S,LIU Y,et al.Realizing high figure of merit in heavy-band p-type half-heusler thermoelectric materials[J].Nature Communications,2015:8144.
[10] JU J J,FU C G,LIU Y T,et al.Unique role of refractory Ta alloying in enhancing the figure of merit of NbFeSb thermoelectric materials[J].Advanced Energy Materials,2017:1701313.
[11] ZHU H,MAO J,LI Y,et al.Discovery of TaFeSb-based half-heuslers with high thermoelectric performance[J].Nature Communications,2019,10(1):270.
[12] SHI X,YANG J,SALVADOR J R,et al.Multiple-filled skutterudites:high thermoelectric figure of merit through separately optimizing electrical and thermal transports[J].Journal of the American Chemical Society,2011,133(20):7837-7846.
[13] ZHAO W,LIU Z,SUN Z,et al.Superparamagnetic enhancement of thermoelectric performance[J].Nature,2017,549:247-251.
[14] SU X,LI H,YAN Y,et al.Microstructure and thermoelectric properties of CoSb2.75Ge0.25-xTexprepared by rapid solidification[J].Acta Materialia,2012,60(8):3536-3544.
[15] SNYDER G J,CHRISTENSEN M,NISHIBORI E,et al.Disordered zinc in Zn4Sb3with phonon-glass and electron-crystal thermoelectric properties[J].Nature Materials,2004,3(7):458-463.
[16] SHI X,YANG J,BAI S,et al.On the design of high efficiency thermoelectric clathrates through a systematic cross-substitution of framework elements[J].Advanced Functional Materials,2010,20:755-763.
[17] LIU W,TAN X,YIN K,et al.Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnxsolid solutions[J].Physical review letters,2012,108(16):166601.
[18] LIU W,CHI H,SUN H,et al.Advanced thermoelectrics governed by a single parabolic band:Mg2Si0.3Sn0.7,a canonical example[J].Physical chemistry chemical physics,2014,16(15):6893-6897.
[19] ZHANG Q,SU X,YAN Y,et al.Phase segregation and superior thermoelectric properties of Mg2Si1-xSbx(0≤x≤0.025) prepared by ultrafast self-propagating high-temperature synthesis[J].ACS Applied Materials & Interfaces,2016,8(5):3268-3276.
[20] ZHANG Q,ZHAO X B,YIN H,et al.Thermoelectric performance of Mg2-xCaxSi compounds[J].Journal of Alloys and Compounds,2008,464(1/2):9-12.
[21] JOSHI G,LEE H,WANG X,et al.Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys[J].Applied Physics Letters,2008,93(19):459-259.
[22] ZINTLE,HUSEMANN E.Bindungsart und Gitterbau binrer Magnesiumverbindungen[J].Zeitschrift Für Physikalische Chemie,1933,21B:138-155.
[23] PINCHERLE L,RADCLIFFE J M.Semiconducting intermetallic compounds[J].Advances in Physics,1956,5(19):271-322.
[24] KAJIKAWA T,KIMURA N,YOKOYAMA T.Thermoelectric properties of intermetallic compounds:Mg3Bi2and Mg3Sb2for medium temperature range thermoelectric elements[C]∥IEEE.International Conference on Themoelectvics the Remoelectrics.La Grande Motte,France,2003.
[25] XIN H X,QIN X Y.Electrical and thermoelectric properties of nanocrystal substitutional semiconductor alloys Mg3(BixSb1-x)2prepared by mechanical alloying[J].Journal of Physics D:Applied Physics,2006,39(24):5331-5337.
[26] AHMADPOUR F,KOLODIAZHNYI T,MOZHARIVSKYJ Y.Structural and physical properties of Mg3-xZnxSb2(x=0-1.34)[J].Journal of Solid State Chemistry,2007,180(9):2420-2428.
[27] BHARDWAJ A,RAJPUT A,SHUKLA A K,et al.Mg3Sb2-based Zintl compound:a non-toxic,inexpensive and abundant thermoelectric material for power generation[J].RSC Advances,2013,3(22):8504.
[28] BHARDWAJ A,MISRA D K.Enhancing thermoelectric properties of a p-type Mg3Sb2-based Zintl phase compound by Pb substitution in the anionic framework[J].RSC Advances,2014,4(65):34552-34560.
[29] SHUAI J,WANG Y,KIM H S,et al.Thermoelectric properties of Na-doped Zintl compound:Mg3-xNaxSb2[J].Acta Materialia,2015,93:187-193.
[30] OHNO S,IMASATO K,ANAND S,et al.Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics[J].Joule,2018,2(1):141-154.
[31] ROSI F D.Thermoelectricity and thermoelectric power generation[J].Solid State Electronics,1968,11(9):833-868.
[32] SNYDER G J,TOBERER E S.Complex thermoelectric materials[J].Nature Materials,2008,7:105-114.
[33] BEER A C,CHASE M N,CHOQUARD P F.Extension of McDougall-stoner tables of the fermi-dirac Functions[J].Helvetica Physica Acta,1955,28:529-542.
[34] LI A,FU C,ZHAO X,et al.High-performance Mg3Sb2-xBixthermoelectrics:progress and perspective[J].Research,2020,2020:1-22.
[35] ZHENG C,HOFFMANN R,NESPER R,et al.Site preferences and bond length differences in CaAl2Si2-type Zintl compounds[J].Journal of the American Chemical Society,2002,108(8):1876-1884.
[36] SUN J,SINGH D.Thermoelectric properties ofAMg2X2,AZn2Sb2(A=Ca,Sr,Ba;X=Sb,Bi),and Ba2ZnX2(X=Sb,Bi) Zintl compounds[J].Journal of Materials Chemistry A,2017,5(18):8499-8509.
[37] IMASATO K,WOOD M,KUO J J,et al.Improved stability and high thermoelectric performance through cation site doping in n-type La-doped Mg3Sb1.5Bi0.5[J].Journal of Materials Chemistry A,2018,6(41):19941-19946.
[38] WOOD M,IMASATO K,ANAND S,et al.The importance of the Mg-Mg interaction in Mg3Sb2-Mg3Bi2shown through cation site alloying[J].Journal of Materials Chemistry A,2020,8(1):2033-2038.
[39] XIA S,MYERS C,BOBEV S.Combined experimental and density functional theory studies on the crystal structures and magnetic properties of Mg(Mg1-xMnx)2Sb2(x~0.25) and BaMn2Sb2[J].European Journal of Inorganic Chemistry,2008,2008(27):4262-4269.
[40] ZHANG J,SONG L,BO B I.Insights into the design of thermoelectric Mg3Sb2and its analogs by combining theory and experiment[J].npj Computational Materials,2019,5:76.
[41] SUN X,LI X,YANG J,et al.Achieving band convergence by tuning the bonding ionicity in n-type Mg3Sb2[J].Journal of Computational Chemistry,2019,40(18):1693-1700.
[42] MENG F,SUN S,MA J,et al.Anisotropic thermoelectric figure-of-merit in Mg3Sb2[J].Materials Today Physics,2020,13:100217.
[43] ZHANG J,SONG L,PEDERSEN S H,et al.Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands[J].Nature Communications,2017,8:13901.
[44] LI J,ZHENG S,FANG T,et al.Computational prediction of a high ZT of n-type Mg3Sb2-based compounds with isotropic thermoelectric conduction performance[J].Physical Chemistry Chemical Physics,2018,20(11):7686-7693.
[45] ZHANG J,SONG L,MAMAKHEL A,et al.High-performance low-cost n-type Se-doped Mg3Sb2-based Zintl compounds for thermoelectric application[J].Chemistry of Materials,2017,29(12):5371-5383.
[46] KAIBE H,TANAKA Y,SAKATA M,et al.Anisotropic galvanomagnetic and thermoelectric properties of n-type Bi2Te3single crystal with the composition of a useful thermoelectric cooling material[J].Journal of Physics & Chemistry of Solids,1989,50(9):945-950.
[47] XIN H X,QIN X Y,JIA J H,et al.Thermoelectric properties of nanocrystalline (Mg1-xZnx)3Sb2isostructural solid solutions fabricated by mechanical alloying[J].Journal of Physics D:Applied Physics,2009,42(16):165403.
[48] KIM I K,JANG K W,KIM I H.Thermoelectric properties of Mg3-xZnxSb2fabricated by mechanical alloying[J].Korean Journal of Materials Research,2013,23(2):98-103.
[49] ZHANG K X,QIN X Y,XIN H X,et al.Transport and thermoelectric properties of nanocrystal substitutional semiconductor alloys (Mg1-xCdx)3Sb2doped with Ag[J].Journal of Alloys and Compounds,2009,484:498-504.
[50] SONG L,ZHANG J,BO B I.Simultaneous improvement of power factor and thermal conductivity via Ag doping in p-type Mg3Sb2thermoelectric materials[J].Journal of Materials Chemistry A,2017,5:4932-4939.
[51] CHEN C,LI X,SHAN L,et al.Enhanced thermoelectric performance of p-type Mg3Sb2by lithium doping and its tunability in an anionic framework[J].Journal of Materials ence,2018,53:16001-16009.
[52] KIM S,KIM C,HONG Y K,et al.Thermoelectric properties of Mn-doped Mg-Sb single crystals[J].Journal of Materials Chemistry A,2014,2(31):12311-12316.
[53] LV F,ZHANG Q,FAN W,et al.Isotropic Mg3Sb2compound prepared by solid-state reaction and ball milling combined with spark plasma sintering[J].Journal of Materials Science,2018,53:8039-8048.
[54] ZHANG Q,HOU J,FAN J,et al.Charge compensation weakening ionized impurity scattering and assessing the minority carrier contribution to the Seebeck coefficient in Pb-doped Mg3Sb2compounds[J].Physical Chemistry Chemical Physics,2020,22(13):7012-7020.
[55] BHARDWAJ A,CHAUHAN N S,GOEL S,et al.Tuning the carrier concentration using Zintl chemistry in Mg3Sb2,and its implications for thermoelectric figure-of-merit[J].Physical Chemistry Chemical Physics,2016,18(8):6191-6200.
[56] FU Y,ZHANG X,LIU H,et al.Thermoelectric properties of Ag-doped compound:Mg3-xAgxSb2[J].Journal of Materiomics,2018,4(1):75-79.
[57] REN Z,SHUAI J,MAO J,et al.Significantly enhanced thermoelectric properties of p-type Mg3Sb2via co-doping of Na and Zn[J].Acta Materialia,2018,143:265-271.
[58] TAMAKI H,SATO H K,KANNO T.Isotropic conduction network and defect chemistry in Mg3+δSb2-based layered Zintl compounds with high thermoelectric performance[J].Advanced Materials,2016,28(46):10182-10187.
[59] SHUAI J,MAO J,SONG S,et al.Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties[J].Energy & Environmental Science,2017,10(3):799-807.
[60] SHI X,ZHAO T,ZHANG X,et al.Extraordinary n-Type Mg3SbBi thermoelectrics enabled by yttrium doping[J].Advanced Materials,2019,31(36):e1903387.
[61] IMASATO K,KANG S D,SNYDER G J.Exceptional thermoelectric performance in Mg3Sb0.6Bi1.4for low-grade waste heat recovery[J].Energy & Environmental Science,2019,12(3):965-971.
[62] ZHANG J,SONG L,BO B I.Rapid one-step synthesis and compaction of high-performance n-Type Mg3Sb2thermoelectrics[J].Angewandte Chemie International Edition,2019,59(11):4278-4282.
[63] SHU R,ZHOU Y,WANG Q,et al.Thermoelectrics:Mg3+δSbxBi2-xfamily:a promising substitute for the state-of-the-art n-type thermoelectric materials near room temperature[J].Advanced Functional Materials,2019,29(4):1970020.
[64] ZHANG J,IVERSEN B B.Fermi surface complexity,effective mass,and conduction band alignment in n-type thermoelectric Mg3Sb2-xBixfrom first principles calculations[J].Journal of Applied Physics,2019,126(8):085104.
[65] LI J,ZHANG S,ZHENG S,et al.Defect chemistry for N-type doping of Mg3Sb2-based thermoelectric materials[J].The Journal of Physical Chemistry C,2019,123(34):20781-20788.
[66] ZHANG J,SONG L,BORUP K A,et al.New insight on tuning electrical transport properties via chalcogen doping in n-type Mg3Sb2-based thermoelectric materials[J].Advanced Energy Materials,2018,8(16):1702776.
[67] SHANG H,LIANG Z,XU C,et al.N-type Mg3Sb2-xBixalloys as promising thermoelectric materials[J].Research,2020,2020:1219461.
[68] MAO J,SHUAI J,SONG S,et al.Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials[J].Proceedings of the National Academy of Sciences of the United States of America,2017,114(40):10548-10553.
[69] KUO J J,KANG S D,IMASATO K,et al.Grain boundary dominated charge transport in Mg3Sb2-based compounds[J].Energy & Environmental Science,2018,11(2):429-434.
[70] SHI X,SUN C,BU Z,et al.Revelation of inherently high mobility enables Mg3Sb2as a sustainable alternative to n-Bi2Te3thermoelectrics[J].Advanced Science,2019,6(16):1802286.
[71] KANNO T,TAMAKI H,SATO H K,et al.Enhancement of average thermoelectric figure of merit by increasing the grain-size of Mg3.2Sb1.5Bi0.49Te0.01[J].Applied Physics Letters,2018,112(3):033903.
[72] KUO J J,YU Y,KANG S D,et al.Mg deficiency in grain boundaries of n-type Mg3Sb2identified by atom probe tomography[J].Advanced Materials Interfaces,2019,6(13):1900429.
[73] IMASATO K,FU C,PAN Y,et al.Metallic n-type Mg3Sb2single crystals demonstrate the absence of ionized impurity scattering and enhanced thermoelectric performance[J].Advanced Materials,2020,32(16):e1908218.
[74] ZHU Q,SONG S,ZHU H,et al.Realizing high conversion efficiency of Mg3Sb2-based thermoelectric materials[J].Journal of Power Sources,2019,414:393-400.
[75] MAO J,ZHU H,DING Z,et al.High thermoelectric cooling performance of n-type Mg3Bi2-based materials[J].Science,2019,365:495-498.
[76] SONG L,ZHANG J,IVERSEN B B.Thermal stability of p-type Ag-doped Mg3Sb2thermoelectric materials investigated by powder X-ray diffraction[J].Physical Chemistry Chemical Physics,2019,21(8):4295-4305.
[77] J RGENSEN L R,ZHANG J,ZEUTHEN C B,et al.Thermal stability of Mg3Sb1.475Bi0.475Te0.05high performance n-type thermoelectric investigated through powder X-ray diffraction and pair distribution function analysis[J].Journal of Materials Chemistry A,2018,6(35):17171-17176.
[78] IMASATO K,OHNO S,KANG S D,et al.Improving the thermoelectric performance in Mg3+xSb1.5Bi0.49Te0.01by reducing excess Mg[J].APL Materials,2018,6(1):016106.