您好,欢迎访问太原理工大学学报| 收藏本站
主管单位:山西省教育厅
主办单位:太原理工大学
出版单位:《太原理工大
    学学报》编辑部
主  编: 孙宏斌
执行主编: 冯国瑞
常务副主编: 刘旭光
副主编: 郝晓刚 董宪姝
董晓强 强 彦
熊晓燕 贾丽红
编辑部主任:贾丽红
国内发行:太原市邮政局
     报刊发行局
国外发行:中国国际图书
     贸易总公司
邮发代号:22-27
CN:14-1220/N
ISSN:1007-9432
您当前的位置: 首页 > 论文 > 2020,51(03) > 土木工程·矿业工程
引用本文:
  • PDF点击下载大小:5.76MB浏览:下载:
  • 基于深度学习的采动地裂缝成因分析和预测

    基金项目:
    山西省自然科学基金资助项目(201701D121015)
    分类号:
    P642.2
    DOI:
    10.16355/j.cnki.issn1007-9432tyut.2020.03.013
    期刊号:
    2020,51(03)
    收稿日期:
    修回日期:
    摘要:
    基于深度学习,提出了一种分析采动地裂缝成因及预测地裂缝发育程度的方法。通过分析官地煤矿的井田地质测量资料和实地调查,确定了11类影响地裂缝发育的因素;依据地裂缝面积与采空区面积的比值,将地裂缝发育程度分为4类。利用深度学习的方法,构建了全连接深度神经网络模型(DNN)对裂缝发育程度进行预测;以预测准确率为指标,通过6次特征选择对影响因素的重要性进行了分析。特征选择的结果表明:开采层数、开采总厚度、开采宽度、开采深度、砂泥岩比、开采长度是影响地裂缝发育的主要特征,地质构造和地表出露是次要特征,煤层倾角、地形坡度、相对位置是冗余特征。与卷积神经网络(CNN)及循环神经网络(RNN/LSTM)模型的训练结果相比,DNN模型预测准确率较高。
    关键字:
    地裂缝;裂缝发育;预测;神经网络;深度学习;特征选择;官地煤矿;

    网站版权:《太原理工大学学报》编辑部;您是本站第 访问者

    地址:太原市迎泽西大街79号,邮编:030024;电话:0351-6111188,6014376 ,6014556
    Baidu
    map