您好,欢迎访问太原理工大学学报| 收藏本站
主管单位:山西省教育厅
主办单位:太原理工大学
出版单位:《太原理工大
    学学报》编辑部
主  编: 孙宏斌
执行主编: 冯国瑞
常务副主编: 刘旭光
副主编: 郝晓刚 董宪姝
董晓强 强 彦
熊晓燕 贾丽红
编辑部主任:贾丽红
国内发行:太原市邮政局
     报刊发行局
国外发行:中国国际图书
     贸易总公司
邮发代号:22-27
CN:14-1220/N
ISSN:1007-9432
您当前的位置: 首页 > 论文 > 2024, 55(01) > 第十一届中国计算机学会大数据学术会议论文选登
引用本文:
  • HTMLPDF点击下载大小:2.39MB浏览:下载:
  • 满足个性化差分隐私的社交网络图生成方法

    基金项目:
    国家自然科学基金资助项目(U20A20179)
    分类号:
    TP309.2
    DOI:
    10.16355/j.tyut.1007-9432.2023BD001
    期刊号:
    2024, 55(01)
    收稿日期:
    2023-08-30
    修回日期:
    2023-10-05
    摘要:
    【目的】 针对现有本地化差分隐私社交网络图生成算法中直接扰动邻居列表的方法会导致引入过多噪声且隐私保护程度不均衡的问题,提出了一种满足个性化的本地差分隐私社交网络图生成方法(GPDP)。【方法】 首先,使用传统的社区发现算法Louvain对原始社交网络图进行划分,保留社区信息;其次,对于划分后的社区根据其社区内部平均权重度比值作为新的隐私预算参数分配给每个节点;然后,每个节点根据新的隐私预算各自扰动其邻居列表,同时利用随机邻接位向量(RABV)方法降低通讯成本;最后合并邻居列表形成生成图。【结果】 通过在真实数据集上的实验结果表明,该算法在发布合成图数据时保证了数据隐私性和可用性的均衡,同时保留了更多的社区结构信息。
    关键字:
    个性化差分隐私;社交网络;隐私保护;合成图生成

    网站版权:《太原理工大学学报》编辑部;您是本站第 访问者

    地址:太原市迎泽西大街79号,邮编:030024;电话:0351-6111188,6014376 ,6014556
    Baidu
    map