您好,欢迎访问太原理工大学学报| 收藏本站
主管单位:山西省教育厅
主办单位:太原理工大学
出版单位:《太原理工大
    学学报》编辑部
主  编: 孙宏斌
执行主编: 冯国瑞
常务副主编: 刘旭光
副主编: 郝晓刚 董宪姝
董晓强 强 彦
熊晓燕 贾丽红
编辑部主任:贾丽红
国内发行:太原市邮政局
     报刊发行局
国外发行:中国国际图书
     贸易总公司
邮发代号:22-27
CN:14-1220/N
ISSN:1007-9432
您当前的位置: 首页 > 论文 > 2024, 55(01) > 第十一届中国计算机学会大数据学术会议论文选登
引用本文:
  • HTMLPDF点击下载大小:2.72MB浏览:下载:
  • 融合知识图谱的预训练模型研究综述

    基金项目:
    宁夏自然科学基金资助项目(2021AAC03224,2021AAC03217);国家自然科学基金资助项目(62162001)
    分类号:
    TP309.2
    DOI:
    10.16355/j.tyut.1007-9432.2023BD003
    期刊号:
    2024, 55(01)
    收稿日期:
    2023-08-30
    修回日期:
    2023-10-23
    摘要:
    【目的】 针对预训练模型仍面临处理复杂任务所需的知识信息质量不高和数量庞杂的挑战,而融合知识图谱的预训练模型可增强其性能。进一步研究并深入探讨如何有效地融合知识图谱到预训练模型中,以丰富目前综述所包含的知识增强类型。【方法】 分析并总结了近年来融合知识图谱的预训练模型的相关文献,首先简要介绍了预训练模型引入知识图谱的原因、优势以及难点;其次详细讨论了隐性结合、显性结合两类方法,并对代表模型的特点与优缺点进行了对比总结;最后对融合知识图谱的预训练模型将面临的挑战以及未来研究发展趋势进行了讨论。【结论】 融合知识图谱的预训练模型核心问题是解决如何将知识库中的信息有效地融合到预训练模型中,未来可以探索更加有效和高效的知识融合方法,以提高模型的性能和泛化能力。
    关键字:
    深度学习;预训练模型;知识图谱;增强

    网站版权:《太原理工大学学报》编辑部;您是本站第 访问者

    地址:太原市迎泽西大街79号,邮编:030024;电话:0351-6111188,6014376 ,6014556
    Baidu
    map