您当前的位置: 首页 > 论文 > 2023,54(04) > 矿业工程
基金项目:
国家重点研发计划项目(2019YFA0705501)
分类号:
TD83
DOI:
10.16355/j.cnki.issn1007-9432tyut.2023.04.010
期刊号:
2023,54(04)
收稿日期:
修回日期:
通讯作者 | 单位 |
杨栋 | 太原理工大学 原位改性采矿教育部重点实验室 |
摘要:
【目的】 油页岩中有机质的密度远低于其他岩石基质,因此,在CT图像中有机质的灰度值往往接近于孔隙裂隙的灰度值,从而在图像中表现为灰度值差异不明显,有机质和岩石的边界模糊等问题。【方法】 为了精准识别分割出油页岩CT图像中的有机质,对深度学习领域的图像分割方法进行研究,并自主搭建了描述有机质分割的OM-Unet语义分割网络架构。通过在传统Unet模型中引入混合空洞卷积模块、由粗到精的部署策略和轻量化自适应特征融合模块,利用卷积神经网络识别分割油页岩CT图像中的有机质,并结合MIoU等评价指标对其分割效果进行评估。【结果】 OM-Unet模型的MIoU为80.66%,相较于三相分割方法、Unet、CBAM-Unet、DeepLabV3、HDC-Unet和LAFF-Unet模型分别增加了8.01%、17.68%、9.5%、2.54%、2.83%和9.13%.OM-Unet模型的MPA为89.16%,相较于三相分割方法、Unet、CBAM-Unet、DeepLabV3、HDC-Unet和LAFF-Unet模型分别增加了12.85%、20.62%、15.82%、8.81%、9.55%和15.34%.【结论】 该结果证明OM-Unet模型可有效提高油页岩有机质分割的准确性,更加精确地确定有机质体积百分比、有机质团数量随温度或者热解条件的变化规律,为油页岩原位开发提供基础理论数据。
关键字:
深度学习;油页岩;有机质;混合空洞卷积;语义分割