您好,欢迎访问太原理工大学学报| 收藏本站
主管单位:山西省教育厅
主办单位:太原理工大学
出版单位:《太原理工大
    学学报》编辑部
主  编: 孙宏斌
执行主编: 冯国瑞
常务副主编: 刘旭光
副主编: 郝晓刚 董宪姝
董晓强 强 彦
熊晓燕 贾丽红
编辑部主任:贾丽红
国内发行:太原市邮政局
     报刊发行局
国外发行:中国国际图书
     贸易总公司
邮发代号:22-27
CN:14-1220/N
ISSN:1007-9432
您当前的位置: 首页 > 论文 > 2022,53(06) > 信息与计算机
引用本文:
  • HTMLPDF点击下载大小:3.28MB浏览:下载:
  • 基于Transformer的端到端路面裂缝检测方法

    基金项目:
    山西省重点研发计划项目(201803D31041);国网山西省电力公司信息化项目(B1051C200016)
    分类号:
    TP391
    DOI:
    10.16355/j.cnki.issn1007-9432tyut.2022.06.021
    期刊号:
    2022,53(06)
    收稿日期:
    修回日期:
    摘要:
    针对路面裂缝检测场景中裂缝形状不规则和背景复杂引起的检测精度较低的问题,提出了一种基于transformer的端到端路面裂缝检测方法CrackFormerNet.首先,在特征提取阶段,引入多尺度特征融合机制,设计了Multi-Scale Transformer骨干网络,将不同下采样倍率特征图融合,提取细节信息丰富的裂缝纹理特征。其次,提出基于 CIoU Loss和L1 Loss的联合回归损失函数来度量预测框和标签间距离,精确评估预测框检测效果。同时,为应对transformer模型收敛缓慢的问题,在编码器-解码器阶段使用Pre-LN Transformer结构,在残差连接内部使用层归一化,加速模型收敛。实验结果表明,方法MAP达到84.2%,优于主流基准方法。与DETR检测方法相比,模型收敛轮次压缩18.4%,检测精度提升3.6%,证明了该方法的有效性。
    关键字:
    路面裂缝检测;多尺度特征融合;Pre-LN Transformer网络;联合回归损失;端到端;

    网站版权:《太原理工大学学报》编辑部;您是本站第 访问者

    地址:太原市迎泽西大街79号,邮编:030024;电话:0351-6111188,6014376 ,6014556
    Baidu
    map