您好,欢迎访问太原理工大学学报| 收藏本站
主管单位:山西省教育厅
主办单位:太原理工大学
出版单位:《太原理工大
    学学报》编辑部
主  编: 孙宏斌
执行主编: 冯国瑞
常务副主编: 刘旭光
副主编: 郝晓刚 董宪姝
董晓强 强 彦
熊晓燕 贾丽红
编辑部主任:贾丽红
国内发行:太原市邮政局
     报刊发行局
国外发行:中国国际图书
     贸易总公司
邮发代号:22-27
CN:14-1220/N
ISSN:1007-9432
您当前的位置: 首页 > 论文 > 2022,53(02) > 第九届中国计算机学会大数据学术会议论文选登
引用本文:
  • HTMLPDF点击下载大小:4.66MB浏览:下载:
  • 基于频繁轨迹序列模式挖掘的路径推荐方法

    基金项目:
    陕西省重点研发计划项目(2019ZDLGY17-08, 2019ZDLGY03-09-01, 2020ZDLGY09-02)
    分类号:
    TP311
    DOI:
    10.16355/j.cnki.issn1007-9432tyut.2022.02.007
    期刊号:
    2022,53(02)
    收稿日期:
    修回日期:
    摘要:
    出行路径推荐是智能交通领域的重要研究内容之一。传统路径推荐方法往往基于路径最短或通行时间最短等单一因素进行路径推荐,而忽略了城市人群出行模式对路径推荐过程的影响。针对上述问题,提出了一种基于频繁轨迹序列模式的路径推荐方法,在数据预处理阶段基于历史轨迹数据库挖掘城市不同时段的频繁序列模式,并以此构建频繁路径序列模式库。在路径推荐阶段,对于给定起止点后确定的一组候选路径集合,利用所提出的长短模式权重评估模型对其进行量化评估并进行排序。然后,取出其评估值为Top-n的路径为用户进行推荐。通过4组模拟场景对推荐结果进行分析,结果表明该推荐方法具备合理性,同时将推荐结果和传统的最短路径和测试集比较分析,证明其推荐的路径更优,与传统的路径推荐算法相比其运行速度也更快。
    关键字:
    智能交通;时空轨迹数据;最短路径;频繁轨迹序列模式挖掘;路径推荐;

    网站版权:《太原理工大学学报》编辑部;您是本站第 访问者

    地址:太原市迎泽西大街79号,邮编:030024;电话:0351-6111188,6014376 ,6014556
    Baidu
    map